The technological and economic prospects for CO 2 utilization and removal 2

The technological and economic prospects for CO 2 utilization and removal

[ad_1]

  • 1.

    Dealing with Carbon Dioxide at Scale (The Royal Society and National Academy of Sciences, 2017).

  • 2.

    von der Assen, N. & Bardow, A. Life cycle assessment of polyols for polyurethane production using CO2 as feedstock: insights from an industrial case study. Green Chem. 16, 3272–3280 (2014).

  • 3.

    Ampelli, C., Perathoner, S. & Centi, G. CO2 utilization: an enabling element to move to a resource- and energy-efficient chemical and fuel production. Philos. Trans. R. Soc. Lond. A 373, 20140177 (2015).

  • 4.

    The Potential and Limitations of Using Carbon Dioxide (The Royal Society, 2017).

  • 5.

    Mac Dowell, N., Fennell, P. S., Shah, N. & Maitland, G. C. The role of CO2 capture and utilization in mitigating climate change. Nat. Clim. Change 7, 243–249 (2017). This paper assesses the potential for CO
    2
    -derived fuels and chemicals to be a fraction of that possible via CO
    2
    -EOR.

  • 6.

    IPCC Special Report: Carbon Dioxide Capture and Storage (eds Metz, B., Davidson, O. R., De Coninck, H., Loos, M. & Meyer, L. A.) (Cambridge Univ. Press, 2005). This IPCC report provides an overview of the technology and expected costs of carbon capture and sequestration, and provides a key definition of CO
    2 utilization.

  • 7.

    Aresta, M., Dibenedetto, A. & Angelini, A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem. Rev. 114, 1709–1742 (2014).

  • 8.

    Quadrelli, E. A., Centi, G., Duplan, J. L. & Perathoner, S. Carbon dioxide recycling: emerging large-scale technologies with industrial potential. ChemSusChem 4, 1194–1215 (2011).

  • 9.

    Mikkelsen, M., Jorgensen, M. & Krebs, F. C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 3, 43–81 (2010).

  • 10.

    Markewitz, P. et al. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ. Sci. 5, 7281–7305 (2012).

  • 11.

    Bushuyev, O. S. et al. What should we make with CO2 and how can we make it? Joule 2, 825–832 (2018).

  • 12.

    Majumdar, A. & Deutch, J. Research opportunities for CO2 utilization and negative emissions at the gigatonne scale. Joule 2, 805–809 (2018). This high-level commentary proposes, using industrial methods, harnessing of the natural biological cycle and a systems approach for industrial CO
    2 utilization at scale.

  • 13.

    Bennett, S. J., Schroeder, D. J. & McCoy, S. T. Towards a framework for discussing and assessing CO2 utilisation in a climate context. Energy Procedia 63, 7976–7992 (2014).

  • 14.

    Harper, A. B. et al. Land-use emissions play a critical role in land-based mitigation for Paris climate targets. Nat. Commun. 9, 2938 (2018).

  • 15.

    Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).

  • 16.

    IPCC Climate Change 2014: Mitigation of Climate Change (eds. Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

  • 17.

    Minasny, B. et al. Soil carbon 4 per mille. Geoderma 292, 59–86 (2017).

  • 18.

    Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016). This paper quantifies potential global impacts of various negative emissions technologies in the context of biophysical resource constraints.

  • 19.

    Lauk, C., Haberl, H., Erb, K.-H., Gingrich, S. & Krausmann, F. Global socioeconomic carbon stocks in long-lived products 1900–2008. Environ. Res. Lett. 7, 034023 (2012).

  • 20.

    Xi, F. et al. Substantial global carbon uptake by cement carbonation. Nat. Geosci. 9, 880–883 (2016).

  • 21.

    Maries, A., Tyrer, M. & Provis, J. L. Sequestration of CO2 emissions from cement manufacture. In Proc. 37th Cement and Concrete Science Conference (eds Bai, Y. et al.) (Institute of Materials, Minerals and Mining, 2017).

  • 22.

    Alcalde, J. et al. Estimating geological CO2 storage security to deliver on climate mitigation. Nat. Commun. 9, 2201 (2018).

  • 23.

    Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).

  • 24.

    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010).

  • 25.

    Scott, V., Haszeldine, R. S., Tett, S. F. B. & Oschlies, A. Fossil fuels in a trillion tonne world. Nat. Clim. Change 5, 419 (2015).

  • 26.

    Gardiner, S. M. A perfect moral storm: climate change, intergenerational ethics and the problem of moral corruption. Environ. Values 15, 397–413 (2006).

  • 27.

    Naims, H. Economics of carbon dioxide capture and utilization—a supply and demand perspective. Environ. Sci. Pollut. Res. 23, 22226–22241 (2016). This paper analyses CO
    2 supply and demand scenarios to conclude that the business case for CO
    2 utilization is technology-specific.

  • 28.

    Fuss, S. et al. Negative emissions—Part 2: Costs, potentials and side effects. Environ. Res. Lett. 13, 063002 (2018). This paper estimates—through a large scoping review—that afforestation and reforestation, BECCS, biochar, enhanced weathering, DACCS and soil carbon sequestration all have multi-gigatonne sequestration potentials in 2050, and that costs vary widely.

  • 29.

    Otto, A., Grube, T., Schiebahn, S. & Stolten, D. Closing the loop: captured CO2 as a feedstock in the chemical industry. Energy Environ. Sci. 8, 3283–3297 (2015).

  • 30.

    Pérez-Fortes, M., Bocin-Dumitriu, A. & Tzimas, E. CO2 utilization pathways: Techno-economic assessment and market opportunities. Energy Procedia 63, 7968–7975 (2014).

  • 31.

    Langanke, J. et al. Carbon dioxide (CO2) as sustainable feedstock for polyurethane production. Green Chem. 16, 1865–1870 (2014).

  • 32.

    Shih, C. F., Zhang, T., Li, J. & Bai, C. Powering the future with liquid sunshine. Joule, 2, 1925–1949 (2018).

  • 33.

    Jarvis, S. M. & Samsatli, S. Technologies and infrastructures underpinning future CO2 value chains: A comprehensive review and comparative analysis. Renew. Sustain. Energy Rev. 85, 46–68 (2018).

  • 34.

    Myhre, G. et al. In Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 659–740 (IPCC, Cambridge Univ. Press, 2013).

  • 35.

    Luo, J., Ledgard, S. & Lindsey, S. Nitrous oxide emissions from application of urea on New Zealand pasture. N. Z. J. Agric. Res. 50, 1–11 (2007).

  • 36.

    Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

  • 37.

    Jiang, Z., Xiao, T., Kuznetsov, V. L. & Edwards, P. P. Turning carbon dioxide into fuel. Philos. Trans. A 368, 3343–3364 (2010).

  • 38.

    Olah, G. A. Beyond oil and gas: the methanol economy. Angew. Chem. Int. Ed. 44, 2636–2639 (2005).

  • 39.

    National Academies of Sciences, Engineering, and Medicine. Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions (National Academies Press, 2016).

  • 40.

    Secretary of Energy Advisory Board. Letter Report: Task Force on RD&D Strategy for CO
    2 Utilization and/or Negative Emissions at the Gigatonne Scale. (US Department of Energy, 2016).

  • 41.

    De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019). This paper reviews the potential for and costs of using renewable energy for electrochemical conversion of concentrated CO
    2 into formic acid, carbon monoxide, ethylene and ethanol, and compares biocatalytic and Fischer–Tropsch routes to long-chain chemical production.

  • 42.

    Dimitriou, I. et al. Carbon dioxide utilisation for production of transport fuels: process and economic analysis. Energy Environ. Sci. 8, 1775–1789 (2015).

  • 43.

    Laurens, L. M. L. State of Technology Review – Algae Bioenergy (IEA Bioenergy, 2017).

  • 44.

    Brynolf, S., Taljegard, M., Grahn, M. & Hansson, J. Electrofuels for the transport sector: A review of production costs. Renew. Sustain. Energy Rev. 81, 1887–1907 (2018).

  • 45.

    Williams, P. J. B. & Laurens, L. M. Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ. Sci. 3, 554–590 (2010).

  • 46.

    Mahoutian, M. & Shao, Y. Production of cement-free construction blocks from industry wastes. J. Clean. Prod. 137, 1339–1346 (2016).

  • 47.

    Provis, J. L. & Bernal, S. A. J. Geopolymers and related alkali-activated materials. Annu. Rev. Mater. Res. 44, 299–327 (2014).

  • 48.

    Dai, Z. et al. CO2 accounting and risk analysis for CO2 sequestration at enhanced oil recovery sites. Environ. Sci. Technol. 50, 7546–7554 (2016).

  • 49.

    Heidug, W. et al. Storing CO
    2 through enhanced oil recovery: combining EOR with CO
    2 storage (EOR+) for profit. (International Energy Agency, 2015).

  • 50.

    Stewart, R. J. & Haszeldine, R. S. Can producing oil store carbon? Greenhouse gas footprint of CO2EOR, offshore North Sea. Environ. Sci. Technol. 49, 5788–5795 (2015).

  • 51.

    Godec, M. L. Global Technology Roadmap for CCS in Industry: Sectoral Assessment CO
    2 Enhanced Oil Recovery. (United Nations Industrial Development Organization, 2011).

  • 52.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

  • 53.

    Smith, P. Soil carbon sequestration and biochar as negative emission technologies. Glob. Change Biol. 22, 1315–1324 (2016).

  • 54.

    Minx, J. C. et al. Negative emissions—Part 1: Research landscape and synthesis. Environ. Res. Lett. 13, 063001 (2018).

  • 55.

    Slade, R., Bauen, A. & Gross, R. Global bioenergy resources. Nat. Clim. Change 4, 99 (2014).

  • 56.

    Vaughan, N. E. et al. Evaluating the use of biomass energy with carbon capture and storage in low emission scenarios. Environ. Res. Lett. 13, 044014 (2018).

  • 57.

    Beerling, D. J. et al. Farming with crops and rocks to address global climate, food and soil security. Nat. Plants 4, 138–147 (2018).

  • 58.

    Pingoud, K., Ekholm, T., Sievänen, R., Huuskonen, S. & Hynynen, J. Trade-offs between forest carbon stocks and harvests in a steady state – a multi-criteria analysis. J. Environ. Manage. 210, 96–103 (2018).

  • 59.

    Lippke, B. et al. Life cycle impacts of forest management and wood utilization on carbon mitigation: knowns and unknowns. Carbon Manage. 2, 303–333 (2011).

  • 60.

    FAOSTAT (Food and Agricultural Organization of the United Nations, accessed 10 May 2018); http://fao.org/faostat/en/#data

  • 61.

    Lal, R. Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degrad. Dev. 17, 197–209 (2006).

  • 62.

    Soussana, J.-F. et al. Matching policy and science: Rationale for the ‘4 per 1000-soils for food security and climate’ initiative. Soil Tillage Res. 188, 3–15 (2019).

  • 63.

    Jeffery, S., Verheijen, F. G., Van Der Velde, M. & Bastos, A. C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 144, 175–187 (2011).

  • 64.

    Jeffery, S. et al. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 12, (2017).

  • 65.

    Werner, C., Schmidt, H. P., Gerten, D., Lucht, W. & Kammann, C. Biogeochemical potential of biomass pyrolysis systems for limiting global warming to 1.5 °C. Environ. Res. Lett. 13, (2018).

  • 66.

    Darton, R. & Yang, A. Removing carbon dioxide from the atmosphere – assessing the technologies. Chem. Eng. Trans. 69, 91–96 (2018).

  • 67.

    Barber, J. Photosynthetic energy conversion: natural and artificial. Chem. Soc. Rev. 38, 185–196 (2009).

  • 68.

    Izquierdo, U. et al. Hydrogen production from methane and natural gas steam reforming in conventional and microreactor reaction systems. Int. J. Hydrogen Energy 37, 7026–7033 (2012).

  • 69.

    Kuckshinrichs, W., Ketelaer, T. & Koj, J. C. Economic analysis of improved alkaline water electrolysis. Front. Energy Res. 5, 1 (2017).

  • 70.

    Kesicki, F. & Strachan, N. Marginal abatement cost (MAC) curves: confronting theory and practice. Environ. Sci. Policy 14, 1195–1204 (2011).

  • 71.

    Viana, V. M., Grieg-Gran, M., Della Mea, R. & Ribenboim, G. The Costs of REDD: Lessons From Amazonas (International Institute for Environment and Development, 2009).

  • 72.

    Fajardy, M. & Mac Dowell, N. Can BECCS deliver sustainable and resource efficient negative emissions? Energy Environ. Sci. 10, 1389–1426 (2017).

  • 73.

    Kätelhön, A., Meys, R., Deutz, S., Suh, S. & Bardow, A. Climate change mitigation potential of carbon capture and utilization in the chemical industry. Proc. Natl Acad. Sci. USA 116, 11187–11194 (2019).

  • 74.

    Jaramillo, P., Griffin, W. M. & McCoy, S. T. Life cycle inventory of CO2 in an enhanced oil recovery system. Environ. Sci. Technol. 43, 8027–8032 (2009).

  • 75.

    Gerber, J. S. et al. Spatially explicit estimates of N2O emissions from croplands suggest climate mitigation opportunities from improved fertilizer management. Glob. Change Biol. 22, 3383–3394 (2016).

  • 76.

    Chen, J. G. et al. Beyond fossil fuel-driven nitrogen transformations. Science 360, eaar6611 (2018).

  • 77.

    Luderer, G. et al. Residual fossil CO2 emissions in 1.5–2 °C pathways. Nat. Clim. Change 8, 626–633 (2018).

  • 78.

    Senftle, T. P. & Carter, E. A. The holy grail: chemistry enabling an economically viable CO2 capture, utilization, and storage strategy. Acc. Chem. Res. 50, 472–475 (2017).

  • 79.

    Keith, D. W., Holmes, G., St., Angelo, D. & Heidel, K. A process for capturing CO2 from the atmosphere. Joule 2, 1573–1594 (2018).

  • 80.

    Mahmood, A., Bano, S., Kim, S.-G. & Lee, K.-H. Water–methanol separation characteristics of annealed SA/PVA complex membranes. J. Membr. Sci. 415–416, 360–367 (2012).

  • 81.

    Xiao, T. et al. The Catalyst Selectivity Index (CSI): a framework and metric to assess the impact of catalyst efficiency enhancements upon energy and CO2 footprints. Top. Catal. 58, 682–695 (2015).

  • 82.

    Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).

  • 83.

    Zimmermann, A. et al. Techno-Economic Assessment & Life-Cycle Assessment Guidelines for CO
    2 Utilization (Global CO2 Initiative, 2018).

  • 84.

    Arvesen, A., Luderer, G., Pehl, M., Bodirsky, B. L. & Hertwich, E. G. Deriving life cycle assessment coefficients for application in integrated assessment modelling. Environ. Model. Softw. 99, 111–125 (2018).

  • 85.

    Scharlemann, J. P. W., Tanner, E. V. J., Hiederer, R. & Kapos, V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manage. 5, 81–91 (2014).

  • 86.

    Dickinson, D. et al. Cost-benefit analysis of using biochar to improve cereals agriculture. Glob. Change Biol. Bioenergy 7, 850–864 (2015).

  • 87.

    Song, J. et al. Processing bulk natural wood into a high-performance structural material. Nature 554, 224–228 (2018).

  • 88.

    Ramage, M. H. et al. The wood from the trees: The use of timber in construction. Renew. Sustain. Energy Rev. 68, 333–359 (2017).

  • 89.

    High-Level Commission on Carbon Prices Report of the High-Level Commission on Carbon Prices (World Bank, 2017).

  • 90.

    Hepburn, C., Pless, J. & Popp, D. Encouraging innovation that protects environmental systems: five policy proposals. Rev. Environ. Econ. Policy (2018).

  • 91.

    Muntean, M. et al. Fossil CO
    2 Emissions of all World Countries—2018 Report. EUR 29433 EN, JRC113738 (Publications Office of the European Union, 2018).

  • 92.

    Sundquist, E. & Visser, K. The geologic history of the carbon cycle. Treatise Geochem. 8, 682 (2003).

  • 93.

    Blunden, J., Derek, S. & Hartfield, G. State of the Climate in 2017. Bull. Amer. Meteor. Soc. 99, Si–S310 (2018).

  • 94.

    Cuéllar-Franca, R. M. & Azapagic, A. Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts. J. CO
    2 Utilization 9, 82–102 (2015). This paper compares the environmental impacts of CO
    2 utilization and CCS technologies by reviewing the literature of life cycle assessment studies.

  • 95.

    Sathre, R. & O’Connor, J. Meta-analysis of greenhouse gas displacement factors of wood product substitution. Environ. Sci. Policy 13, 104–114 (2010).

  • 96.

    van der Giesen, C., Kleijn, R. & Kramer, G. J. Energy and climate impacts of producing synthetic hydrocarbon fuels from CO2. Environ. Sci. Technol. 48, 7111–7121 (2014).

  • 97.

    Sternberg, A., Jens, C. M. & Bardow, A. Life cycle assessment of CO2-based C1-chemicals. Green Chem. 19, 2244–2259 (2017).

  • 98.

    Abanades, J. C., Rubin, E. S., Mazzotti, M. & Herzog, H. J. On the climate change mitigation potential of CO2 conversion to fuels. Energy Environ. Sci. 10, 2491–2499 (2017).

  • 99.

    Sternberg, A. & Bardow, A. Life cycle assessment of power-to-gas: syngas vs methane. ACS Sustain. Chem. Eng. 4, 4156–4165 (2016).

  • [ad_2]

    Source link

    Leave a Comment

    Your email address will not be published. Required fields are marked *

    ×

    Hello!

    Click one of our representatives below to chat on WhatsApp or send us an email to [email protected]

     

    × Order Via Whatsapp?